Contrast limits of coherence-gated imaging in scattering media

Abstract
The fundamental difference between time-resolved and coherence-gated imaging modalities in scattering media is analyzed in terms of their optical transfer functions. The effectiveness of coherence gating for multiple-scattering rejection is shown by imaging a 100-µm-thick razor blade hidden in the scattering phantoms (i.e., Intralipid suspensions) with different scattering coefficients. We found that the imaging contrast is limited by multiple scattering and speckle effects in high-scattering media, and the measured effective penetration depth of optical coherence tomography is approximately equal to six mean free paths under the experimental conditions of a numerical aperture of less than 0.1 and a scattering anisotropy of approximately 0.8.