Mechanism of Heating and the Boundary Layer over the Tibetan Plateau

Abstract
The structure of the boundary layer and the mechanism of heating over the Tibetan Plateau are examined using the data obtained from the First GARP (Global Atmospheric Research Program) Global Experiment and the Chinese Qinghai–Xizang (Tibet) Plateau Meteorological Experiment from May to August 1979. The meteorological elements near the plateau surface exhibit pronounced diurnal variations. There is a large ground–air temperature difference during the daytime generating a thin layer of superadiabatic lapse rates near the surface. The horizontal wind speed attains the minimum in the morning and the maximum in the evening. A deep and well-mixed layer of potential temperature is observed over the western and central plateau in the evening (1200 UTC). However, moisture is not well mixed vertically and water vapor mixing ratio is larger in the morning (0000 UTC) than in the evening. The mixed layer becomes shallower from the western to the central plateau and it disappears over the eastern plateau. The... Abstract The structure of the boundary layer and the mechanism of heating over the Tibetan Plateau are examined using the data obtained from the First GARP (Global Atmospheric Research Program) Global Experiment and the Chinese Qinghai–Xizang (Tibet) Plateau Meteorological Experiment from May to August 1979. The meteorological elements near the plateau surface exhibit pronounced diurnal variations. There is a large ground–air temperature difference during the daytime generating a thin layer of superadiabatic lapse rates near the surface. The horizontal wind speed attains the minimum in the morning and the maximum in the evening. A deep and well-mixed layer of potential temperature is observed over the western and central plateau in the evening (1200 UTC). However, moisture is not well mixed vertically and water vapor mixing ratio is larger in the morning (0000 UTC) than in the evening. The mixed layer becomes shallower from the western to the central plateau and it disappears over the eastern plateau. The...

This publication has 0 references indexed in Scilit: