Abstract
Nucleosomes were reconstituted in vitro from a fragment of DNA spanning the simian virus 40 minimal replication origin. The fragment contains a 27-base-pair palindrome (perfect inverted repeat). DNA molecules with stable cruciform structures were generated by heteroduplexing this DNA fragment with mutants altered within the palindromic sequence (C. Nobile and R. G. Martin, Int. Virol., in press). Analyses of the structural features of the reconstituted nucleosomes by the DNase I footprint technique revealed two alternative DNA-histone arrangements, each one accurately phased with respect to the uniquely labeled DNA ends. As linear double-stranded DNA, a unique core particle was formed in which the histones strongly protected the regions to both sides of the palindrome. The cruciform structure seemed to be unable to associate with core histones and, therefore, an alternative phasing of the histone octamer along the DNA resulted. Thus, nucleosome positioning along a specific DNA sequence appears to be influenced in vitro by the secondary structure (linear or cruciform) of the 27-base-pair palindrome. The formation of cruciform structures in vivo, if they occur, might therefore represent a molecular mechanism by which nucleosomes are phased.