POLYMERS DERIVED FROM HEXAFLUOROACETONE

Abstract
The continuing demand for polymeric materials with a unique combination of properties has brought forth a sizable research effort concerning the use of trifluoromethyl substituents, particularly the 1,1,1,3,3,3-hexafluoroisopropylidene (HFIP) function derived from the incorporation of hexafluoroacetone (HFA) into the monomer. This work had its beginnings approximately 25 years ago when Rogers briefly reported in a patent the preparation of polyimides (PIs) from an hexafluoroisopropylidenebrideged diamine [1,2]. Since then numerous efforts have been made toward the synthesis, characterization, and evaluation of CF3-containing polymers. Much of this information is found in patents, indicating the importance of these polymers to industry. At the present time, at least 11 known classes of polymers containing pendant or backbone-incorporated bis-trifluoromethyl groups have been reported. These polymers show promise as film formers, gas separation membranes, seals, soluble polymers, coatings, and in other high-temperature applications. Frequently the polymer properties imparted by the inclusion of the HFIP function encompass: increased solubility, flame resistance, glass transition temperature, thermal stability, oxidation resistance, and environmental stability; decreased color, crystallinity, dielectric constant, and water absorption.

This publication has 24 references indexed in Scilit: