The Escherichia coli PII Signal Transduction Protein Regulates the Activities of the Two-Component System Transmitter Protein NRII by Direct Interaction with the Kinase Domain of the Transmitter Module

Abstract
The PII signal transduction protein regulates the transcription of nitrogen-regulated genes by controlling the kinase and phosphatase activities of NRII. We used a cross-linking approach to study the interaction of the T-loop of the PII protein with NRII. Cross-linking of PII to NRII required ATP and 2-ketoglutarate, allosteric effectors known to control PII activity, and was not affected by the presence of excess nonspecific proteins such as bovine serum albumin. The purified cross-linked species appeared to consist mainly of PII trimers in which one of the three subunits was cross-linked to a single subunit of the NRII dimer; this complex had the phosphatase activity characteristic of the un-cross-linked PII−NRII complex, and had significant phosphatase activity in the absence of 2-ketoglutarate, suggesting that once PII was tethered to NRII the active conformation was stabilized. Studies with truncated forms of NRII indicated that the purified N-terminal “sensory” domain of NRII was not cross-linked to PII, nor was a polypeptide consisting of NRII residues 1−189. In contrast, polypeptides containing the kinase domain of the transmitter module of NRII (residues 190−349) were cross-linked to PII in an ATP- and 2-ketoglutarate-dependent reaction. These results indicate that PII controls NRII by interaction with the conserved kinase domain of the transmitter module.