Crosslinking and Mechanical Properties of Liquid Rubber. I. Curative Effect of Aliphatic DIOLS

Abstract
The structure-property relationships of polyurethane elastomers derived from a liquid hydroxyl-terminated polybutadiene/low molecular weight aliphatic diol/diisocyanate system were studied. The effects of the amount of low molecular weight diol on the mechanical properties of the elastomer were discussed on the basis of the results of stress-strain, swelling, dynamic viscoelasticity, x-ray diffraction, etc. It was found that some particular combinations of low molecular weight diol and diisocyanate specifically affect the properties of elastomers. When the mechanical properties of the elastomers were plotted against the number of methylene carbons in the low molecular weight diol, characteristic zigzag patterns were obtained. These patterns were explained by the difference in the packing and the dependence of the strength of intermolecular hydrogen bonding on whether the number of the methylene carbons was even or odd. This assumption was confirmed by x-ray diffraction.