Path integral centroid variables and the formulation of their exact real time dynamics

Abstract
A formalism is presented in this paper which, for the first time, establishes the theoretical basis for the quantum time evolution of path integral centroid variables and also provides clear motivation for using these variables to study condensed phase quantum dynamics. The equilibrium centroid distribution is first shown to be a well-defined distribution function which is specific to the canonical density operator. A quantum mechanical quasi-density operator (QDO) is associated with each value of the distribution so that, upon application of the standard quantum mechanical formalism, the QDO can be used to provide a rigorous definition of both static and dynamical centroid variables. Various properties of the dynamical centroid variables are derived, including the perspective that the centroid constraint on the imaginary time paths introduces a nonstationarity in the equilibrium ensemble which, in turn, can be shown to yield information on the correlations of spontaneous fluctuations. The analytic solution for the harmonic oscillator and a numerical solution for a double well system are provided which illustrate the various aspects of the theory. The theory contained herein provides the basis for a derivation of Centroid Molecular Dynamics, as well as the systematic improvements of that theory.