Abstract
One-dimensional $\delta^{'}$-function potential is discussed in the framework of Green's function formalism without invoking perturbation expansion. It is shown that the energy-dependent Green's function for this case is crucially dependent on the boundary conditions which are provided by self-adjoint extension method. The most general Green's function which contains four real self-adjoint extension parameters is constructed. Also the relation between the bare coupling constant and self-adjoint extension parameter is derived.

This publication has 0 references indexed in Scilit: