Mesoscale Simulation of Supercritical, Subcritical, and Transcritical Flow along Coastal Topography

Abstract
A mesoscale atmospheric model is used to address the characteristics of stratified flow bounded by a side wall along a varying coastline. Initial Froude number values are varied through alteration of marine inversion strength, permitting examination of supercritical, subcritical, and transcritical flow regimes encountering several coastal configurations. Consistent with shallow water models, sharp drops in boundary layer depth and flow acceleration occur in flow rounding convex bends; however, significant flow response occurs in the stratified layer aloft, which is unexplained by conventional shallow water theory. The strongest flow acceleration occurs in the transcritical case while, regardless of inversion strength, the deformation of the isentropes aloft shows general structural similarity. Advection of horizontal momentum is an important component of the horizontal force balance. A simulation having several coastline bends exhibits a detached, oblique hydraulic jump upwind of a concave bend t... Abstract A mesoscale atmospheric model is used to address the characteristics of stratified flow bounded by a side wall along a varying coastline. Initial Froude number values are varied through alteration of marine inversion strength, permitting examination of supercritical, subcritical, and transcritical flow regimes encountering several coastal configurations. Consistent with shallow water models, sharp drops in boundary layer depth and flow acceleration occur in flow rounding convex bends; however, significant flow response occurs in the stratified layer aloft, which is unexplained by conventional shallow water theory. The strongest flow acceleration occurs in the transcritical case while, regardless of inversion strength, the deformation of the isentropes aloft shows general structural similarity. Advection of horizontal momentum is an important component of the horizontal force balance. A simulation having several coastline bends exhibits a detached, oblique hydraulic jump upwind of a concave bend t...

This publication has 0 references indexed in Scilit: