Universal behavior of QCD amplitudes at high energy from general tools of statistical physics

  • 1 October 2004
Abstract
We show that high energy scattering is a statistical process essentially similar to reaction-diffusion in a system made of a finite number of particles. The Balitsky-JIMWLK equations correspond to the time evolution law for the particle density. The squared strong coupling constant plays the role of the minimum particle density. Discreteness is related to the finite number of partons one may observe in a given event and has a sizeable effect on physical observables. Using general tools developed recently in statistical physics, we derive the universal terms in the rapidity dependence of the saturation scale and the scaling form of the amplitude, which come as the leading terms in a large rapidity and small coupling expansion.

This publication has 0 references indexed in Scilit: