Ionic selectivity of the paracellular shunt path across rabbit corneal endothelium

Abstract
We have measured the dilution and biionic potentials across the isolated rabbit corneal endothelium in order to learn about the ionic selectivity of its intercellular junctions. Single-salt dilution potentials have been measured as a function of [NaCl] or [NaHCO3] gradients across the tissue. Biionic potentials were similarly measured by replacing Na+ with K+ on either side of the tissue. The potentials thus measured were fit to the constant field equation and to an approximation of it to obtain the ionic permeabilities for K+, HCO 3 and Cl relative to Na+. The permeability sequence obtained wasP K>P Na>P HCO3≅P Cl. Potentials were also measured after imposing an osmotic gradient across the preparation using sucrose. The results obtained with all these methods are consistent and suggest that this tissue is slightly more permeant to cations than anions, but that the selectivity of the intercellular junction is relatively low. From these experiments, a 30mm gradient of salt across the endothelial layer would be needed in order to explain the observed spontaneous potential difference (about 1 mV, aqueous negative) across that layer if the potential was due to the selectivity of the intercellular junctions. Such a value for the gradient is much larger than theoretical estimates of it; therefore, we favor electrogenic transport of HCO 3 as a better explanation for the origin of the spontaneous potential difference.