THE DE NOVO SYNTHESIS OF TYROSINE HYDROXYLASE IN RAT SUPERIOR CERVICAL GANGLIA IN VITRO: THE EFFECT OF NERVE GROWTH FACTOR

Abstract
Abstract— An immunoprecipitation technique has been employed to measure the rate of synthesis of tyrosine hydroxylase in organ cultures of rat superior cervical ganglia and the effect of nerve growth factor on that rate. Ganglia which have been maintained in culture for 16 h without nerve growth factor synthesize tyrosine hydroxylase; the hydroxylase comprises approx 0.2% of the newly synthesized soluble protein. While the total amount of tyrosine hydroxylase synthesized de novo increases in the presence of physiological levels of nerve growth factor, the differential rate of tyrosine hydroxylase synthesis is essentially unchanged. At higher levels of nerve growth factor (3–10 μg/ml) there is a small increase in the differential rate of tyrosine hydroxylase synthesis. The major action of nerve growth factor appears to be on the survival of the tissue, but a small effect on the induction of tyrosine hydroxylase is evident at high levels of nerve growth factor.