Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis
- 1 August 2003
- journal article
- research article
- Published by Wiley in Molecular Microbiology
- Vol. 49 (3) , 833-847
- https://doi.org/10.1046/j.1365-2958.2003.03602.x
Abstract
Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3) GlcNAc. The role of these structures in meningococcal pathogenesis has not been resolved. In previous studies we identified two separate genetic loci, pglA and pglBCD, involved in pilin glycosylation. Putative functions have been allocated to these genes; however, there are not enough genes to account for the complete biosynthesis of the described structures, suggesting additional genes remain to be identified. In addition, it is not known why some strains express the trisaccharide structure and some the disaccharide structure. In order to find additional genes involved in the biosynthesis. of these structures, we used the recently published group A strain Z2491 and group B strain MC58 Neisseria meningitidis genomes and the unfinished Neisseria meningitidis group C strain FAM18 and Neisseria gonorrhoeae strain FA1090 genomes to identify novel genes involved in pilin glycosylation, based on homology to known oligosaccharide biosynthetic genes. We identified a new gene involved in pilin glycosylation designated pglE and examined four additional genes pgIB/B2, pglF, pglG and pglH. A strain survey revealed that pglE and pglF were present in each strain examined. The pglG, pglH and pgIB2 polymorphisms were not found in strain C311#3 but were present in a large number of clinical isolates. Insertional mutations were constructed in pglE and pglF in N. meningitidis strain C311#3, a strain with well-defined lipopolysaccharide (LPS) and pilin-linked glycan structures. Increased gel migration of the pilin subunit molecules of pglE and pglF mutants was observed by Western analysis, indicating truncation of the trisaccharide structure. Antisera specific for the C311#3 trisaccharide failed to react with pilin from these pglE and pglF mutants. GC-MS analysis of the sugar composition of the pglE mutant showed a reduction in galactose compared with C311#3 wild type. Analysis of amino acid sequence homologies has suggested specific roles for pglE and pglF in the biosynthesis of the trisaccharide structure. Further, we present evidence that pglE, which contains heptanucleotide repeats, is responsible for the phase variation between trisaccharide and disaccharide structures in strain C311#3 and other strains. We also present evidence that pglG, pglH and pgIB2 are potentially phase variable.Keywords
This publication has 55 references indexed in Scilit:
- Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferasesJournal of Molecular Biology, 2001
- Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. CohenJournal of Molecular Biology, 2001
- Identification of Residues Involved in Catalytic Activity of the Inverting Glycosyl Transferase WbbE from Salmonella enterica Serovar BorrezeJournal of Bacteriology, 2001
- Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491Nature, 2000
- Protein secondary structure prediction based on position-specific scoring matrices 1 1Edited by G. Von HeijneJournal of Molecular Biology, 1999
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Tandem repeats of the tetramer 5′‐CAAT‐3’present in lic2A are required for phase variation but not lipopolysaccharide biosynthesis in Haemophilus influenzaeMolecular Microbiology, 1996
- Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases.The Journal of Experimental Medicine, 1996
- Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovoraMolecular Microbiology, 1995
- Bacterial and Mycotic Infections of ManThe Lancet Healthy Longevity, 1965