Irradiance Measurements in the Upper Ocean

Abstract
Observations were made of downward solar radiation as a function of depth during an experiment in the North Pacific (35°N, 155°W). The irradiance meter employed was sensitive to solar radiation of wavelength 400–1000 nm arriving from above at a horizontal surface. Because of selective absorption of the short and long wavelengths, the irradiance decreases much faster than exponential in the upper few meters, falling to one-third of the incident value between 2 and 3 m depth. Below 10 m the decrease was exponential at a rate characteristic of moderately clear water of Type IA. Neglecting one case having low sun altitude, the observations are well represented by the expression I/I0=Rez/ζ1+(1−R)ezζ2, where I is the irradiance at depth −z, I0 is the irradiance at the surface less reflected solar radiation, R=0.62, ζ1 and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively, and z is the vertical space coordinate, positive upward with the origin at mean sea level. The depth at which the irrad... Abstract Observations were made of downward solar radiation as a function of depth during an experiment in the North Pacific (35°N, 155°W). The irradiance meter employed was sensitive to solar radiation of wavelength 400–1000 nm arriving from above at a horizontal surface. Because of selective absorption of the short and long wavelengths, the irradiance decreases much faster than exponential in the upper few meters, falling to one-third of the incident value between 2 and 3 m depth. Below 10 m the decrease was exponential at a rate characteristic of moderately clear water of Type IA. Neglecting one case having low sun altitude, the observations are well represented by the expression I/I0=Rez/ζ1+(1−R)ezζ2, where I is the irradiance at depth −z, I0 is the irradiance at the surface less reflected solar radiation, R=0.62, ζ1 and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively, and z is the vertical space coordinate, positive upward with the origin at mean sea level. The depth at which the irrad...