The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback
Preprint
- 13 June 2005
Abstract
The properties of the host galaxies of a well-defined sample of 2215 radio-loud AGN with redshifts 0.03 < z < 0.3, defined from the SDSS, are investigated. These are predominantly low radio luminosity sources, with 1.4GHz luminosities of 10^23 to 10^25 W/Hz. The fraction of galaxies that host radio-loud AGN with L(1.4GHz) > 10^23 W/Hz is a strong function of stellar mass, rising from nearly zero below a stellar mass of 10^10 Msun to more than 30% at 5x10^11 Msun. The integral radio luminosity function is derived in six ranges of stellar and black hole mass. Its shape is very similar in all of these ranges and can be well fitted by a broken power-law. Its normalisation varies strongly with mass, as M_*^2.5 or M_BH^1.6; this scaling only begins to break down when the predicted radio-loud fraction exceeds 20-30%. There is no correlation between radio and emission line luminosities for the radio-loud AGN in the sample and the probability that a galaxy of given mass is radio-loud is independent of whether it is optically classified as an AGN. The host galaxies of the radio-loud AGN have properties similar to those of ordinary galaxies of the same mass. All of these findings support the conclusion that the optical AGN and low radio luminosity AGN phenomena are independent and are triggered by different physical mechanisms. Intriguingly, the dependence on black hole mass of the radio-loud AGN fraction mirrors that of the rate at which gas cools from the hot atmospheres of elliptical galaxies. It is speculated that gas cooling provides a natural explanation for the origin of the radio-loud AGN activity, and it is argued that AGN heating could plausibly balance the cooling of the gas over time. [Abridged]Keywords
All Related Versions
This publication has 0 references indexed in Scilit: