A stepwise framework for the normalization of array CGH data
Open Access
- 18 November 2005
- journal article
- research article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 6 (1) , 274
- https://doi.org/10.1186/1471-2105-6-274
Abstract
Background: In two-channel competitive genomic hybridization microarray experiments, the ratio of the two fluorescent signal intensities at each spot on the microarray is commonly used to infer the relative amounts of the test and reference sample DNA levels. This ratio may be influenced by systematic measurement effects from non-biological sources that can introduce biases in the estimated ratios. These biases should be removed before drawing conclusions about the relative levels of DNA. The performance of existing gene expression microarray normalization strategies has not been evaluated for removing systematic biases encountered in array-based comparative genomic hybridization (CGH), which aims to detect single copy gains and losses typically in samples with heterogeneous cell populations resulting in only slight shifts in signal ratios. The purpose of this work is to establish a framework for correcting the systematic sources of variation in high density CGH array images, while maintaining the true biological variations. Results: After an investigation of the systematic variations in the data from two array CGH platforms, SMRT (Sub Mega base Resolution Tiling) BAC arrays and cDNA arrays of Pollack et al., we have developed a stepwise normalization framework integrating novel and existing normalization methods in order to reduce intensity, spatial, plate and background biases. We used stringent measures to quantify the performance of this stepwise normalization using data derived from 5 sets of experiments representing self-self hybridizations, replicated experiments, detection of single copy changes, array CGH experiments which mimic cell population heterogeneity, and array CGH experiments simulating different levels of gene amplifications and deletions. Our results demonstrate that the three-step normalization procedure provides significant improvement in the sensitivity of detection of single copy changes compared to conventional single step normalization approaches in both SMRT BAC array and cDNA array platforms. Conclusion: The proposed stepwise normalization framework preserves the minute copy number changes while removing the observed systematic biases.Keywords
This publication has 11 references indexed in Scilit:
- High-resolution array CGH increases heterogeneity tolerance in the analysis of clinical samplesGenomics, 2005
- A tiling resolution DNA microarray with complete coverage of the human genomeNature Genetics, 2004
- SeeGH – A software tool for visualization of whole genome array comparative genomic hybridization dataBMC Bioinformatics, 2004
- Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arraysBMC Genomics, 2004
- The intraclass correlation coefficient applied for evaluation of data correction, labeling methods, and rectal biopsy sampling in DNA microarray experimentsPhysiological Genomics, 2003
- Normalization of cDNA microarray dataMethods, 2003
- Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumorsProceedings of the National Academy of Sciences, 2002
- Statistical intelligence: effective analysis of high-density microarray dataDrug Discovery Today, 2002
- Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA MicroarrayScience, 1995
- Robust Locally Weighted Regression and Smoothing ScatterplotsJournal of the American Statistical Association, 1979