Use of a compact sandwich specimen to evaluate fracture toughness and interfacial bonding of bone

Abstract
The objective of the present study was to develop a reliable and statistically valid test to measure the fracture toughness of small specimens of bone, and by extension, prosthetic materials, using a compact sandwich specimen. Samples of bone were sandwiched between holders of a different material and using this specimen configuration a new technique was developed to test the fracture toughness of the bone interlayer. The effects of different specimens sizes and holder materials were investigated empirically. Using finite element analysis a correction factor was determined to account for the finite thickness of the interlayer and the analytical solutions governing the test specimen were accordingly modified. Bulk compact tension specimens of bone were tested for comparison. Both wet and dry bone were evaluated and the fracture surface morphology characterized using scanning electron microscopy. The results indicate no statistically significant differences between the fracture toughness values obtained from the compact tension and sandwich specimens. The application of this technique to the testing of interfacial bonding between bone and biomaterials is discussed.