Embedding of cycles in arrangement graphs

Abstract
Arrangement graphs have been proposed as an attractive interconnection topology for large multiprocessor systems. The authors study these graphs by proving the existence of Hamiltonian cycles in any arrangement graph. They also prove that an arrangement graph contains cycles of all lengths ranging between 3 and the size of the graph. They show that an arrangement graph can be decomposed into node disjoint cycles in many different ways.

This publication has 6 references indexed in Scilit: