Contribution of hydrophobic interactions to protein stability

Abstract
A major factor in the folding of proteins is the burying of hydrophobic side chains. A specific example is the packing of alpha-helices on beta-sheets by interdigitation of nonpolar side chains. The contributions of these interactions to the energetics of protein stability may be measured by simple protein engineering experiments. We have used site-directed mutagenesis to truncate hydrophobic side chains at an alpha-helix/beta-sheet interface in the small ribonuclease from Bacillus amyloliquefaciens (barnase). The decreases in stability of the mutant proteins were measured by their susceptibility to urea denaturation. Creation of a cavity the size of a -CH2-group destabilizes the enzyme by 1.1 kcal mol-1, and a cavity the size of three such groups by 4.0 kcal mol-1.