Chromatin models. Thermal denaturation studies of (Lysx,Leuy)n- and (Lys)n(Leu)m-DNA complexes

Abstract
The structural transitions of (Lysx, Leuy)n-DNA and (Lysx)n(Leuy)m-DNA complexes have been studied by thermal denaturation utilizing simultaneous absorption and circular dichroism (CD) measurements [R. Mandel and G.D. Fasman (1974), Biochem. Biophys. Res. Commun. 59, 672]. These complexes are used as models for nucleohistones. At amino acid/nucleotide ratios r less than 1, the copolymers bind to DNA in a ratio of one amino acid residue per nucleotide, and such binding stabilizes the DNA double helix against thermal denaturation relative to the unbound regions. The leucine residues in the copolymers stabilize the bound portion of the complex against thermal denaturation but to a lesser degree than does poly(L-lysine). This study confirms the hypothesis that absorption melting profiles reflect only the change in secondary structure (helix-coil transition) of DNA. It was found that, in the absence of a higher ordered structure (condensed), the CD melting profile also reflects this same conformational transition, and the melting temperatures, Tm, in CD are equal to those in absorption. However, when a higher ordered structure (tertiary) exists in the complex, then the CD melting profile will be dominated by the structural transitions related to the melting of the higher ordered asymmetric structure in the condensed state, followed by the melting of the secondary structure. Under such circumstances, the Tm obtained from absorption may be slightly different from that of the CD, since only the secondary structural changes are being reflected in absorption. The relevance of these studies to the structure of chromatin is discussed.

This publication has 0 references indexed in Scilit: