Abstract
We present a review of methods for the forward and inverse problems in optical tomography. We limit ourselves to the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction. We discuss the derivation of the diffusion approximation and other simplifications of the full transport problem. We develop sensitivity relations in both the continuous and discrete case with special concentration on the use of the finite element method. A classification of algorithms is presented, and some suggestions for open problems to be addressed in future research are made.