Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation

Abstract
We consider the evolution of an isolated elliptical vortex in a weakly dissipative fluid. It is shown computationally that a spatially smooth vortex relaxes inviscidly towards axisymmetry on a circulation timescale as the result of filament generation. Heuristically, we derive a simple geometrical formula relating the rate of change of the aspect ratio of a particular vorticity contour to its orientation relative to the streamlines (where the orientation is defined through second-order moments). Computational evidence obtained with diagnostic algorithms validates the formula. By considering streamlines in a corotating frame and applying the new formula, we obtain a detailed kinematic understanding of the vortex's decay to its final state through a primary and a secondary breaking. The circulation transported into the filaments although a small fraction of the total, breaks the symmetry and is the chief cause of axisymmetrization.