Biologically variable ventilation prevents deterioration of gas exchange during prolonged anaesthesia

Abstract
We have studied the time course of changes in gas exchange and respiratory mechanics using two different modes of ventilation during 7 h of isoflurane anaesthesia in pigs. One group received conventional control mode ventilation (CV). The other group received biologically variable ventilation (BVV) which simulates the breath-to-breath variation in ventilatory frequency (f) that characterizes normal spontaneous ventilation. After baseline measurements with CV, animals were allocated randomly to either CV or BVV (FIO2 1.0 with 1.5% end-tidal isoflurane). With BVV, there were 376 changes in f and tidal volume (VT) over 25.1 min. Ventilation was continued over the next 7 h and blood gases and respiratory mechanics were measured every 60 min. The modulation file used to control the ventilator for BVV used an inverse power law frequency distribution (I/fa with a = 2.3 +/- 0.3). After 7 h, at a similar delivered minute ventilation, significantly greater PaO2 (mean 72.3 (SD 4.0) vs 63.5 (6.5) kPa) and respiratory system compliance (1.08 (0.08) vs 0.92 (0.16) ml cm H2O-1 kg-1) and lower PaCO2 (6.5 (0.7) vs 8.7 (1.5) kPa) and shunt fraction (7.2 (2.7)% vs 12.3 (6.2)%) were seen with BVV, with no significant difference in peak airway pressure (16.3 (1.2) vs 15.3 (3.7) cm H2O). A deterioration in gas exchange and respiratory mechanics was seen with conventional control mode ventilation but not with BVV in this experimental model of prolonged anaesthesia.

This publication has 0 references indexed in Scilit: