Abstract
Lumped models of skeletal muscle have been assumed a) in the design of experiments and the interpretation of experimental findings, b) in theoretical studies. In this paper, a population model that takes into account the differing properties and separate (independent) activation of motor units is presented as the most appropriate for muscle. A realistic (for muscle) transformation, population→lumped model, resulting in the lumping of motor unit neural signals or system responses, is proposed. On this basis, the possibility of modelling muscle as a single system is examined; and the consequences of treating muscle as a lumped system, in experiments or theoretical studies, are discussed. Also, the advantages of lumping, in models of muscle, are reviewed. Predictions of a computer population model, together with actual recordings from a hand muscle, are used to confirm the results of the analysis.