Abstract
This paper reviews recent efforts to describe complex patterns in isotropic fluids (Rayleigh–Bénard convection) as well as in anisotropic liquid crystals (electro-hydrodynamic convection) when driven away from equilibrium. A numerical scheme for solving the full hydrodynamic equations is presented that allows surprisingly well for a detailed comparison with experiments. The approach can also be useful for a systematic construction of models (order parameter equations).