Active Oxygen Species and Lysophosphatidylcholine Are Involved in Oxidized Low Density Lipoprotein Activation of Smooth Muscle Cell DNA Synthesis

Abstract
It has recently been shown that oxidative modification of LDL enhances the mitogenic effect of LDL on smooth muscle cell (SMC) DNA synthesis. However, because of its complex chemical structure, the mitogenic components have not been well characterized. Exposure of LDL to the oxidant Cu2+ is followed by a rapid accumulation of peroxides that peaks after 8 to 12 hours and a conversion of the phospholipid phosphatidylcholine into lysophosphatidylcholine that continues for up to 48 hours. Most of the mitogenic activity is formed during the first 4 hours of oxidation. Both superoxide dismutase and catalase effectively inhibit the mitogenic activity of oxidized LDL, suggesting involvement of reactive oxygen intermediates. In the presence of 1% serum, low concentrations of hydrogen peroxide activated SMC DNA synthesis in a dose-dependent manner, with a maximal effect at a concentration of 200 μmol/L, whereas higher concentrations were inhibitory. Lysophosphatidylcholine also enhanced SMC DNA synthesis, with a maximal stimulation at a concentration of 10 μmol/L. Oxysterols, which also accumulate in oxidized LDL, effectively inhibited DNA synthesis. These results demonstrate that oxidation of LDL is associated with formation of several substances affecting the growth of SMCs. Among these substances, low levels of reactive oxygen intermediates and lysophosphatidylcholine stimulate DNA synthesis, whereas at a higher concentration they, as well as oxysterols, are inhibitory.