Chlorocatechols Substituted at Positions 4 and 5 Are Substrates of the Broad-Spectrum Chlorocatechol 1,2-Dioxygenase of Pseudomonas chlororaphis RW71
Open Access
- 1 February 2001
- journal article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 183 (3) , 997-1011
- https://doi.org/10.1128/jb.183.3.997-1011.2001
Abstract
The nucleotide sequence of a 10,528-bp region comprising the chlorocatechol pathway gene cluster tetRtetCDEF of the 1,2,3,4-tetrachlorobenzene via the tetrachlorocatechol-mineralizing bacterium Pseudomonas chlororaphis RW71 (T. Potrawfke, K. N. Timmis, and R.-M. Wittich, Appl. Environ. Microbiol. 64:3798–3806, 1998) was analyzed. The chlorocatechol 1,2-dioxygenase gene tetC was cloned and overexpressed in Escherichia coli . The recombinant gene product was purified, and the α,α-homodimeric TetC was characterized. Electron paramagnetic resonance measurements confirmed the presence of a high-spin-state Fe(III) atom per monomer in the holoprotein. The productive transformation by purified TetC of chlorocatechols bearing chlorine atoms in positions 4 and 5 provided strong evidence for a significantly broadened substrate spectrum of this dioxygenase compared with other chlorocatechol dioxygenases. The conversion of 4,5-dichloro- or tetrachlorocatechol, in the presence of catechol, displayed strong competitive inhibition of catechol turnover. 3-Chlorocatechol, however, was simultaneously transformed, with a rate similar to that of the 4,5-halogenated catechols, indicating similar specificity constants. These novel characteristics of TetC thus differ significantly from results obtained from hitherto analyzed catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases.Keywords
This publication has 61 references indexed in Scilit:
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- Sequence analysis of the 2,4-dichlorophenol hydroxylase gene tfdB and 3,5-dichlorocatechol 1,2-dioxygenase gene tfdC of 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011Gene, 1996
- Chlorocatechol 1,2‐Dioxygenase from Rhodococcus Erythropolis 1CPEuropean Journal of Biochemistry, 1994
- Structure of Protocatechuate 3,4-Dioxygenase from Pseudomonas aeruginosa at 2.15 Å ResolutionJournal of Molecular Biology, 1994
- Crystallization of Catechol-1,2 Dioxygenase from Pseudomonas arvilla C-1Journal of Molecular Biology, 1994
- Purification and properties of chlorocatechol 1,2-dioxygenase from Alcaligenes denitrificans BRI 6011Canadian Journal of Microbiology, 1993
- Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001Gene, 1991
- An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxygenaseBiochemistry, 1990
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970