Synthesis and characterization of gold(III) adducts and cyclometallated derivatives with 6-benzyl- and 6-alkyl-2,2′-bipyridines

Abstract
The reaction of a series of 6-substituted-2,2′-bipyridines HL (N2C10H7R, R = CH2Ph, CHMePh, CMe2Ph, CH2Me, CMe3 or CH2CMe3) with HAuCl4 or Na[AuCl4] has been investigated. Under different experimental conditions, salts [H2L][AuCl4], adducts [Au(HL)Cl3] or cyclometallated derivatives [Au(L)Cl][X](X = AuCl4, BF4 or PF6) have been isolated. The cyclometallated species arise from direct activation of a C–H bond either of a phenyl or a methyl substituent. The structures of an adduct [Au{N2C10H7(CHMePh)-6}Cl3] and two metallated species [Au{N2C10H7(CMe2C6H4)-6}Cl][AuCl4] and [Au{N2C10H7(CMe2CH2)-6}Cl][BF4]·0.5H2O have been determined by X-ray diffraction. In the adduct the gold atom is bonded to the nitrogen atom of the unsubstituted pyridine ring: a long-range interaction with the other nitrogen atom is observed, Au ⋯ N 2.758(4)Å. In the two cyclometallated species the bipyridines act as tridentate N,N,C anions, giving a [5,6] and a [5,5]-fused ring system, respectively. In [Au{N2C10H7(CMe2C6H4)-6}Cl]+ the hexaatomic N,C ring adopts a boat-like conformation: the structure reveals a rather short interaction between one hydrogen of the Me group in axial position and the gold atom, Au ⋯ H 2.62 Å. The pentaatomic N,C ring in [Au{N2C10H7(CMe2CH2)-6}Cl]+ is not planar: the co-ordination around the gold atom is essentially square planar. The new cyclometallated complexes [Au(N,N,C)Cl]+ are compared with those derived from similarly substituted pyridines described previously.

This publication has 28 references indexed in Scilit: