Gravito-inertial waves in a rotating stratified sphere or spherical shell
- 10 November 1999
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 398, 271-297
- https://doi.org/10.1017/s0022112099006308
Abstract
The properties of gravito-inertial waves propagating in a stably stratified rotating spherical shell or sphere are investigated using the Boussinesq approximation. In the perfect fluid limit, these modes obey a second-order partial differential equation of mixed type. Characteristics propagating in the hyperbolic domain are shown to follow three kinds of orbits: quasi-periodic orbits which cover the whole hyperbolic domain; periodic orbits which are strongly attractive; and finally, orbits ending in a wedge formed by one of the boundaries and a turning surface. To these three types of orbits, our calculations show that there correspond three kinds of modes and give support to the following conclusions. First, with quasi-periodic orbits are associated regular modes which exist at the zero-diffusion limit as smooth square-integrable velocity fields associated with a discrete set of eigenvalues, probably dense in some subintervals of [0, N], N being the Brunt–Väisälä frequency. Second, with periodic orbits are associated singular modes which feature a shear layer following the periodic orbit; as the zero-diffusion limit is taken, the eigenfunction becomes singular on a line tracing the periodic orbit and is no longer square-integrable; as a consequence the point spectrum is empty in some subintervals of [0, N]. It is also shown that these internal shear layers contain the two scales E1/3 and E1/4 as pure inertial modes (E is the Ekman number). Finally, modes associated with characteristics trapped by a wedge also disappear at the zero-diffusion limit; eigenfunctions are not square-integrable and the corresponding point spectrum is also empty.Keywords
This publication has 0 references indexed in Scilit: