Reconstructing the tempo and mode of evolution in an extinct clade of birds with ancient DNA: The giant moas of New Zealand
Open Access
- 31 May 2005
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 102 (23) , 8257-8262
- https://doi.org/10.1073/pnas.0409435102
Abstract
The tempo and mode of evolution of the extinct giant moas of New Zealand remain obscure because the number of lineages and their divergence times cannot be estimated reliably by using fossil bone characters only. We therefore extracted ancient DNA from 125 specimens and genetically typed them for a 658-bp mtDNA control region sequence. The sequences detected 14 monophyletic lineages, 9 of which correspond to currently recognized species. One of the newly detected lineages was a genetically divergent form of Megalapteryx originally described as a separate species, two more were lineages of Pachyornis in southern and northeastern New Zealand, and two were basal lineages of South Island Dinornis. When results from genetic typing and previous molecular sexing were combined, at least 33.6% of the specimens were incorrectly classified. We used longer sequences of the control region and nine other mtDNA genes totaling 2,814 base pairs to derive a strongly supported phylogeny of the 14 moa lineages. Molecular dating estimated the most recent common ancestor of moas existed after the Oligocene drowning of New Zealand. However, a cycle of lineage-splitting occurred ≈4–10 million years ago, when the landmass was fragmented by tectonic and mountain-building events and general cooling of the climate. These events resulted in the geographic isolation of lineages and ecological specialization. The spectacular radiation of moa lineages involved significant changes in body size, shape, and mass and provides another example of the general influence of large-scale paleoenvironmental changes on vertebrate evolutionary history.Keywords
This publication has 33 references indexed in Scilit:
- The tempo of avian diversification during the QuaternaryPhilosophical Transactions Of The Royal Society B-Biological Sciences, 2004
- Molecular estimation of eulipotyphlan divergence times and the evolution of “Insectivora”Molecular Phylogenetics and Evolution, 2003
- Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirdsProceedings Of The Royal Society B-Biological Sciences, 2002
- Complete mitochondrial DNA geonome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesisProceedings Of The Royal Society B-Biological Sciences, 2001
- Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebratesMolecular Biology and Evolution, 1996
- Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogenyMolecular Biology and Evolution, 1996
- The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisisProceedings Of The Royal Society B-Biological Sciences, 1995
- Evolution of the moa and their effect on the New Zealand floraTrends in Ecology & Evolution, 1993
- The genetic legacy of Mother Goose– phylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineagesMolecular Ecology, 1992
- Simultaneous editing of multiple nucleic acid and protein sequences with ESEEBioinformatics, 1989