Cell wall structure and deposition in Glaucocystis
Open Access
- 1 April 1978
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 77 (1) , 103-119
- https://doi.org/10.1083/jcb.77.1.103
Abstract
Events leading to cell wall formation in the ellipsoidal unicellular alga Glaucocystis are described. The wall is deposited in three phases: (a) a thin nonfibrillar layer, (b) cellulosic microfibrils arranged in helically crossed polylamellate fashion, and (c) matrix substances. At poles of cells, microfibrils do not terminate but pass around three equilaterally arranged points, resulting in microfibril continuity between the twelve helically wound wall layers. These findings were demonstrated in walls of both mother cells and freeze-fractured growing cells, and models of the wall structure are presented. Cellular extension results in spreading apart, and in rupture, of microfibrils. On freeze-fractured plasma membranes, there were 35 nm X 550 nm structures associated with the ends of microfibrils. These are interpreted as representing microfibril-synthesizing centers (terminal complexes) in transit upon the membrane. These terminal complexes are localized in a zone, or zones. The plasma membrane is subtended by flattened sacs, termed shields, which become cross-linked to the plasma membrane after completion of wall deposition. During wall deposition, microtubules lie beneath the shields, and polarized filaments lie between shields and plasma membrane. The significance of these findings in relation to understanding the process of cellulose deposition is discussed, and comparisons are made with the alga Oocystis.This publication has 7 references indexed in Scilit:
- Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process.Proceedings of the National Academy of Sciences, 1976
- Cellulosic Microfibrils: Nascent Stages of Synthesis in a Higher Plant CellScience, 1976
- Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane.Proceedings of the National Academy of Sciences, 1976
- Freeze-Etching NomenclatureScience, 1975
- A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesisJournal of Theoretical Biology, 1974
- The Relationship between the Plasmalemma and Plant Cell WallPublished by Elsevier ,1973
- Zur Cytologie und taxonomischen Einordnung von GlaucocystisArchiv für Mikrobiologie, 1966