Abstract
The Taylor–Saffman problem concerns the fingering instability which develops when one liquid displaces another, more viscous, liquid in a porous medium, or equivalently for Newtonian liquids, in a Hele-Shaw cell. Recent experiments with Hele-Shaw cells using non-Newtonian liquids have shown striking qualitative differences in the fingering pattern, which for these systems branches repeatedly in a manner resembling the growth of a fractal. This paper is an attempt to provide the beginnings of a hydrodynamical theory of this instability by repeating the analysis of Taylor & Saffman using a more general constitutive model. In fact two models are considered; the Oldroyd ‘Fluid B’ model which exhibits elasticity but not shear thinning, and the Ostwald–de Waele power-law model with the opposite combination. Of the two, only the Oldroyd model shows qualitatively new effects, in the form of a kind of resonance which can produce sharply increasing (in fact unbounded) growth rates as the relaxation time of the fluid increases. This may be a partial explanation of the observations on polymer solutions; the similar behaviour reported for clay pastes and slurries is not explained by shear-thinning and may involve a finite yield stress, which is not incorporated into either of the models considered here.