Abstract
A general method is presented for the exact treatment of analytical problems that have solutions representing solitary waves. The theoretical framework of the method is developed in abstract first, providing a range of fixed-point theorems and other useful resources. It is largely based on topological concepts, in particular the fixed-point index for compact mappings, and uses a version of positive-operator theory referred to Frechet spaces. Then three exemplary problems are treated in which steadily propagating waves of permanent form are known to be represented. The first covers a class of one-dimensional model equations that generalizes the classic Korteweg—de Vries equation. The second concerns two-dimensional wave motions in an incompressible but density-stratified heavy fluid. The third problem describes solitary waves on water in a uniform canal.

This publication has 30 references indexed in Scilit: