Photon blockade induced Mott transitions and XY spin models in coupled cavity arrays
Preprint
- 17 July 2007
Abstract
As photons do not interact with each other, it is interesting to ask whether photonic systems can be modified to exhibit the phases characteristic of strongly coupled many-body systems. We demonstrate how a Mott insulator type of phase of excitations can arise in an array of coupled electromagnetic cavities, each of which is coupled resonantly to a {\em single} two level system (atom/quantum dot/Cooper pair) and can be individually addressed from outside. In the Mott phase each atom-cavity system has the same integral number of net polaritonic (atomic plus photonic) excitations with photon blockade providing the required repulsion between the excitations in each site. Detuning the atomic and photonic frequencies suppresses this effect and induces a transition to a photonic superfluid. We also show that for zero detuning, the system can simulate the dynamics of many body spin systems.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: