INTERSYSTEM CROSSING OF THE ELECTRONICALLY EXCITED DIDEUTEROETHYLENE MOLECULES FORMED IN BENZENE PHOTOSENSITIZATION

Abstract
Experimental evidence is presented for a rapidly occurring intersystem crossing of the electronically excited dideuteroethylene molecules initially formed in the benzene-photosensitized reaction at 2 537 Å and 25 °C to another excited state which is responsible for the internal H-atom scrambling. The mechanism is entirely analogous to that previously postulated for the photoexcited states sensitized by Hg(3P1) atoms but the rate constants for intersystem crossing and molecular decomposition are drastically decreased as a result of the smaller amount of energy available for the excitation.

This publication has 16 references indexed in Scilit: