Hydrogen bonding and other polar interactions of 1-, 2-, and 4-octyne with organic solvents

Abstract
The heats of vaporization of 1-octyne (10.11 ± 0.02 kcal/mol), 2-octyne (10.63 ± 0.03 kcal/mol), and 4-octyne (10.21 ± 0.02 kcal/mol) have been determined. Heats of solution of the liquid octynes and n-octane have been measured in heptane, cyclohexane, 1,2-dichloroethane, n-butyl ether, ethanol, triethylamine, dimethyl sulfoxide, butyrolactone, dimethylformamide, and hexamethylphosphoric triamide. Enthalpies of transfer from vapor to each solvent have been calculated. Enthalpies of hydrogen bond formation, calculated by the pure base method, become more exothermic in the above solvent order. Correlations with the Taft–Kamlet solvent parameters π* and β indicate that other polar interactions (presumably dipole – induced dipole) are appreciably larger for 1-octyne than for 2- and 4-octyne.

This publication has 0 references indexed in Scilit: