Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo
- 1 July 2002
- journal article
- Published by Wiley in British Journal of Pharmacology
- Vol. 136 (6) , 905-917
- https://doi.org/10.1038/sj.bjp.0704774
Abstract
Myocardial injury caused by ischaemia and reperfusion comes from multiple pathogenic events, including endothelial damage, neutrophil extravasation into tissue, mast cell activation, and peroxidation of cell membrane lipids. These events are followed by myocardial cell alterations resulting eventually in cell necrosis. An enhanced formation of reactive oxygen species is widely accepted as a stimulus for tissue destruction and cardiac failure. In this study, we have investigated the cardioprotective effects of M40403 in myocardial ischaemia-reperfusion injury. M40403 is a low molecular weight, synthetic manganese containing superoxide dismutase mimetic (SODm) that selectively removes superoxide anion. Ischaemia was induced in rat hearts in vivo by ligating the left anterior descending coronary artery. Thirty minutes after the induction of ischaemia, the ligature was removed and reperfusion allowed to occur for at least 60 min. M40403 (0.1–1 mg kg−1) was given intravenously 15 min before ischaemia. The results obtained in this study showed that M40403 significantly reduced the extent of myocardial damage, mast cell degranulation and the incidence of ventricular arrhythmias. Furthermore, M40403 significantly attenuated, in a dose-dependent manner, neutrophil infiltration in the myocardium as well as the associated induction of lipid peroxidation. Calcium overload seen post-reperfusion of the ischaemic myocardium was also reduced by M40403. Immunohistochemical analysis for nitrotyrosine revealed a positive staining in cardiac tissue taken after reperfusion: this was attenuated by M40403. Moreover reperfused cardiac tissue sections showed positive staining for P-selectin and for anti-intercellular adhesion molecule (ICAM-1) in the vascular endothelial cells. M40403 treatment markedly reduced the intensity and degree of P-selectin and ICAM-1 in these tissues. No staining for nitrotyrosine, P-selectin or ICAM-1 was found in cardiac tissue taken at the end of the ischaemic period. Overall, M40403 treatment reduced the morphological signs of myocardial cell injury and significantly improved survival. Taken together, these results clearly indicate that M40403 treatment exerts a protective effect against ischaemia-reperfusion-induced myocardial injury, supporting a key role for superoxide anion in reperfusion injuries. This suggests that synthetic enzymes of SOD such as M40403, offer a novel therapeutic approach for the treatment of ischaemic heart disease where superoxide anion plays a dominant role. British Journal of Pharmacology (2002) 136, 905–917. doi:10.1038/sj.bjp.0704774Keywords
This publication has 113 references indexed in Scilit:
- Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemie myocardiumPublished by Elsevier ,2002
- Lecithinized Cu, Zn-Superoxide Dismutase Limits the Infarct Size Following Ischemia-Reperfusion Injury in Rat Hearts in VivoBiochemical and Biophysical Research Communications, 2001
- Protective effects of a new stable, highly active SOD mimetic, M40401 in splanchnic artery occlusion and reperfusionBritish Journal of Pharmacology, 2001
- Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxideFEBS Letters, 1995
- Production of hydroxyl radicals and their disassociation from myocardial cell injury during calcium paradoxFree Radical Biology & Medicine, 1992
- Ischemia reperfusion injury and histamine release in isolated and perfused guinea-pig heart: Pharmacological interventionsInflammation Research, 1990
- Oxygen-Derived Free Radicals in Postischemic Tissue InjuryNew England Journal of Medicine, 1985
- Electrophysiologic observations on ventricular tachyarrhythmias following reperfusionAmerican Heart Journal, 1983
- The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholineNature, 1980
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976