Identification of the polymerized orthorhombic phase of C60 fullerene

Abstract
It is established by x-ray diffraction and Raman scattering that the polymerization of C60 fullerene at 1.5 GPa and 723 K leads to the formation of an orthorhombic phase that is different from the previously identified high-pressure orthorhombic phase. It is determined by a calculation of the optimal packing of linear C60 polymers by the method of atom-atom potentials that the energetically favorable structure of the orthorhombic phase belongs to the space group P n n m and not the previously proposed group I m m m. The computed value of the rotation angle of the polymer chains that corresponds to the minimum packing energy was equal to 61°. The mechanisms leading to the formation of the polymerized phases are discussed on the basis of the results obtained.