Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro.
- 1 October 1993
- journal article
- abstracts
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 73 (4) , 696-704
- https://doi.org/10.1161/01.res.73.4.696
Abstract
To study the functional significance of cardiac isomyosin heterogeneity, active sliding of actin-myosin was studied using two different types of in vitro motility assay systems: (1) a sliding actin filament assay, in which fluorescently labeled actin filaments were made to slide on a myosin layer attached to a glass coverslip, and (2) a myosin-coated bead assay, in which myosin-coated latex beads were made to slide on actin cables of an alga. Two different isomyosins were obtained from 3-week-old (V1) and hypothyroid (V3) rat hearts and were mixed to form solutions with various mixing ratios [V1/(V1 + V3)]. For these myosin mixtures, both ATPase activity and sliding velocity of actin-myosin were determined. As the relative content of V1 increased, both ATPase activity and velocity increased. However, in contrast to the linear relation between the mixing ratio and ATPase activity, the relation between the mixing ratio and sliding velocity was sigmoid, suggesting the existence of mechanical interaction between different isomyosins. To clarify the nature of this interaction, sliding velocity was measured for mixtures of V1 and p-N,N'-phenylene-dimaleimide-treated V1 myosin (pPDM-M). A convex relation was observed between the relative content of pPDM-M and velocity. Because pPDM-M is known to form a noncycling and weakly bound crossbridge with actin, it is expected to exert a constant internal load on V1, in contrast to the actively cycling V3. In conclusion, in actomyosin sliding, different isomyosins mechanically interact when they coexist. The interaction may be a dynamic one that cannot be explained by a simple load effect.Keywords
This publication has 23 references indexed in Scilit:
- Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assayJournal of Molecular Biology, 1990
- Myosin step sizeJournal of Molecular Biology, 1990
- ATP-dependent movement of myosin in vitro: characterization of a quantitative assay.The Journal of cell biology, 1984
- Isozymic changes in myosin of human atrial myocardium induced by overload. Immunohistochemical study using monoclonal antibodies.Journal of Clinical Investigation, 1984
- Active sliding movement of latex beads coated with skeletal muscle myosin onChara actin bundlesProtoplasma, 1984
- Movement of myosin-coated fluorescent beads on actin cables in vitroNature, 1983
- Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosinBasic Research in Cardiology, 1982
- Species- and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammalsDevelopmental Biology, 1981
- The ATPase activities of rat cardiac myosin isoenzymesFEBS Letters, 1980
- Spatial proximity of the two essential sulfhydryl groups of myosinBiochemistry, 1974