Magnetoencephalographic recording of steadystate visual evoked cortical activity

Abstract
Steady-state visual evoked magnetic fields (SSVEFs) were recorded in response to a flickering light source using a 37-channel magnetometer. The SSVEF had a sinusoidal waveform having the same fundamental frequency as the driving stimulus, which was either 6.0 Hz, 11.9 Hz, or 15.2 Hz. SSVEF topographies at each frequency had a dipoloar form over the posterior head that could well-modelled by single equivalent current dipoles. The best-fit dipoles were localized in posterior occipital cortex for the SSVEFs to 6.0 and 11.9 Hz stimuli and in more anterior and ventromedial occipital cortex for the 15.2 Hz SSVEP.