Intestinal Brush-Border Membrane Enzyme Activities and Transport Functions during Prenatal Development of Pigs

Abstract
Enzyme activities and rates of leucine and glucose uptake were measured using brush-border membrane vesicles prepared from the small intestine of 7-, 8-, 10-, and 12-week fetal (43, 49, 61, and 74% of gestation) and unsuckled, neonatal pigs. Lactase was detected in 7-week fetuses, with a large increase in activity between 10 weeks of gestation and birth. gamma-Glutamyltranspeptidase activity was stable throughout gestation, whereas sucrase activity was not detected. Active L-leucine uptake was already present at 7 weeks of gestation, with an increasing distal-to-proximal gradient observed at birth. D-glucose uptake was low at 7 weeks, but by 8 weeks it exhibited a typical overshoot phenomenon and established a decreasing proximal-to-distal gradient by 12 weeks. D-glucose uptake at all ages was directly related to incubation temperature, but less so for 7- and 10-week fetuses. By 12 weeks strict Na(+)-dependency of D-glucose uptake was observed along the entire length of the small intestine. Kinetic analysis of Na(+)-D-glucose cotransport showed a shift from the presence of both high- and low-affinity systems at 8 weeks of gestation to a single high-affinity Michaelian component at birth. In light of similarities with human fetuses, the pig may be a valuable model for studying development of intestinal transport during gestation, particularly during the final trimester, when availability of human tissue is limited.

This publication has 33 references indexed in Scilit: