Targeted Disruption of the Protein Tyrosine Phosphatase-Like Molecule IA-2 Results in Alterations in Glucose Tolerance Tests and Insulin Secretion

Abstract
IA-2 is a major autoantigen in type 1 diabetes. Autoantibodies to IA-2 appear years before the development of clinical disease and are being widely used as predictive markers to identify individuals at risk for developing type 1 diabetes. IA-2 is an enzymatically inactive member of the transmembrane protein tyrosine phosphatase family and is an integral component of secretory granules in neuroendocrine cells. To study its function, we generated IA-2−deficient mice. Northern and Western blot analysis showed that neither IA-2 mRNA nor protein was expressed. Physical examination of the IA-2− /− animals and histological examination of tissues failed to reveal any abnormalities. Nonfasting blood glucose levels, measured over 6 months, were slightly elevated in male IA-2−/− as compared to IA-2+ /+ littermates, but remained within the nondiabetic range. Glucose tolerance tests, however, revealed statistically significant elevation of glucose in both male and female IA-2−/− mice and depressed insulin release. In vitro glucose stimulation of isolated islets showed that male and female mice carrying the disrupted gene released 48% (P < 0.001) and 42% (P < 0.01) less insulin, respectively, than mice carrying the wild-type gene. We concluded that IA-2 is involved in glucose-stimulated insulin secretion.