Polymeric sustained local drug delivery system for the prevention of vascular intimal hyperplasia

Abstract
Anastomotic intimal hyperplasia (IH) is a major cause of both autologous vein and synthetic vascular graft failure. We have previously published data suggesting that cyclosporin may reduce the development of IH in a canine model. However, systemic administration of cyclosporin could create serious adverse effects. Therefore, it is our long-term goal to test the hypothesis that the controlled local release of cyclosporin from a polymeric vascular wrap will prevent the development of IH. To test this hypothesis, we developed a controlled release vascular wrap (sheet/ring) using a poly(ethylene glycol) (PEG) hydrogel. Sterilization of the polymers was performed using the ethylene oxide and hydrogen peroxide sterilization methods. It was found that except for one combination (8000 molecular weight and 1:1 crosslinking ratio), the differences in the swelling ratios for the sterilized and unsterilized hydrogels were not statistically significant. Release studies from unsterilized and ethylene oxide-sterilized PEG hydrogels were conducted. It was found that release lasted for approximately 50 h for sterilized as well as unsterilized PEG hydrogels. Acute animal studies, to test the deployment of both the polymeric sheets and rings to the adventitial surface of native arteries and veins, were completed successfully. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 489–495, 2004