Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man
- 20 December 2002
- journal article
- research article
- Published by Wiley in Immunological Reviews
- Vol. 190 (1) , 95-122
- https://doi.org/10.1034/j.1600-065x.2002.19008.x
Abstract
Summary: The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.Keywords
This publication has 186 references indexed in Scilit:
- In search of the ‘missing self’: MHC molecules and NK cell recognitionPublished by Elsevier ,2003
- Is tapasin a modified Mhc class I molecule?Immunogenetics, 2001
- Songbird Genomics: Analysis of 45 kb Upstream of a Polymorphic Mhc Class II Gene in Red-Winged Blackbirds (Agelaius phoeniceus)Genomics, 2001
- Comparative Feline Genomics: A BAC/PAC Contig Map of the Major Histocompatibility Complex Class II RegionGenomics, 2001
- A Radiation Hybrid Map of BTA23: Identification of a Chromosomal Rearrangement Leading to Separation of the Cattle MHC Class II SubregionsGenomics, 1998
- Invited anniversary review: HLA associated diseasesHuman Immunology, 1997
- A new polymorphic and multicopy MHC gene family related to nonmammalian class IImmunogenetics, 1994
- Composite origin of major histocompatibility complex genesCurrent Opinion in Genetics & Development, 1993
- Differences in the central major histocompatibility complex between humans and chimpanzees implications for development of autoimmunity and acquired immune deficiency syndromeHuman Immunology, 1993
- Class I gene contraction within the HLA-A subregion of the human MHCGenomics, 1992