Abstract
Summary An osmotic method was used to study the salt permeability induced by gramicidin A in liposomes. Sequences of cation permeation were obtained for iodide, salycilate, acetate und formate salts in liposomes below and above their transition temperature. Salycilate and formate salts, unlike acetate and iodide salts, exhibit the same sequences for cation selectivity in liposomes below and above their transition temperature. These results can be explained by assuming three mechanisms for salt permeation across gramicidin-containing liposomes: (i) the anion moves by the lipid part of the membrane whereas the cation moves by the gramicidin channel, (ii) movement of the undissociated acid species occurs through the lipid part of the membrane followed by cation-proton exchange via the gramicidin channel and (iii) the cation and anion may move simultaneously via the gramicidin channel. When the movement of the anion or undissociated acid across the lipid part of the membrane is not rate limiting the permeation process, the cation selectivity obtained agrees with the cation selectivity of the gramicidin A channel, as determined by others using independent measurements.

This publication has 46 references indexed in Scilit: