Abstract
The role of hydrogen bonding in red cell aggregation induced by dextran was studied with the use of urea, an inhibitor for hydrogen bonding. In order to avoid hemolysis of red cells by the high concentration of urea, the studies were performed on human red cells hardened in glutaraldehyde. The degree of red cell aggregation at Hct = 45% was estimated by the use of a coaxial cylinder viscometer. The viscometric aggregation index (VAI) was calculated from viscosity values at shear rates of 52 sec−1H) and 0.05 sec−1L); VAI = (ηL–ηH)/ηH. Red cells with surface charge intact and with charge removal by neuraminidase treatment were studied. Urea at high concentrations, e.g., 6 M, significantly inhibited red cell aggregation induced by dextran. These findings indicate that hydrogen bonding plays an important role in dextran‐induced red cell aggregation. An understanding of the nature of the forces involved in red cell aggregation serves to establish the physicochemical principles of cell‐to‐cell interactions induced by macromolecules.