Dynamic In Vitro Quantification of Bioprosthetic Heart Valve Leaflet Motion Using Structured Light Projection
- 1 November 2001
- journal article
- Published by Springer Nature in Annals of Biomedical Engineering
- Vol. 29 (11) , 963-973
- https://doi.org/10.1114/1.1415523
Abstract
Quantification of heart valve leaflet deformation during the cardiac cycle is essential in understanding normal and pathological valvular function, as well as in the design of replacement heart valves. Due to the technical complexities involved, little work to date has been performed on dynamic valve leaflet motion. We have developed a novel experimental method utilizing a noncontacting structured laser-light projection technique to investigate dynamic leaflet motion. Using a simulated circulatory loop, a matrix of 150–200 laser light points were projected over the entire leaflet surface. To obtain unobstructed views of the leaflet surface, a stereo system of high-resolution boroscopes was used to track the light points at discrete temporal points during the cardiac cycle. The leaflet surface at each temporal point was reconstructed in three dimensions, and fit using our biquintic hermite finite element approach (Smith et al., Ann. Biomed. Eng. 26:598–611, 2001). To demonstrate our approach, we utilized a bovine pericardial bioprosthetic heart valve, which revealed regions of complex flexural deformation and substantially different shapes during the opening and closing phases. In conclusion, the current method has high spatial and temporal resolution and can reconstruct the entire surface of the cusp simultaneously. Because it is completely noncontacting, this approach is applicable to studies of fatigue and bioreactor technology for tissue engineered heart valves. © 2001 Biomedical Engineering Society. PAC01: 8719Hh, 8780-y, 4262Be, 8719StKeywords
This publication has 0 references indexed in Scilit: