Hormonal regulation of germination and early seedling development in Acer pseudoplatanus (L.)

Abstract
Dormancy of intact sycamore (Acer pseudoplatanus) seeds was broken by chilling (5°C) for several weeks in moist conditions. Treatment of unchilled seeds with kinetin induced some germination, but gibberellin was ineffective. This stimulation by kinetin was not suppressed by the added presence of abscisic acid during incubation. The chilling requirement of intact seeds was eliminated by removal of the testa, and the naked embryos developed with no morphological abnormalities. During early growth of isolated embryos in the light, two distinct developmental processes were recognised. One involved initial elongation of the radicle accompanied by geotropic curvature and was stimulated by kinetin but not by gibberellin, while the other involved unrolling of the cotyledons, which was accelerated by gibberellin but much less by kinetin. Abscisic acid strongly suppressed both developmental processes when applied alone, inhibited cotyledon expansion in the presence of gibberellin, but failed to overcome the promotory effects of kinetin on radicle growth. Experiments with CCC indicated that under natural conditions the unrolling of the cotyledons is dependent upon endogenous gibberellin. Radicle growth of isolated embryos was unimpaired by incubation in the dark, but cotyledon expansion of water incubated embryos was poor, and although it was accelerated by gibberellin, the responses in all treatments were slower than in the corresponding light grown samples. It is suggested that endogenous cytokinins are primary factors in the initiation of radicle growth, while gibberellins are important in cotyledon expansion. Abscisic acid appears to have an inhibitory role in both processes, and the interactions of these regulators in the control of germination and development are discussed.