Voltage quantization by ballistic vortices in two-dimensional superconductors

Abstract
The voltage generated by moving ballistic vortices with a mass mν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions.