Bordism, rho-invariants and the Baum-Connes conjecture

  • 6 December 2004
Abstract
Let G be a finitely generated discrete group. In this paper we establish vanishing results for rho-invariants associated to (i) the spin-Dirac operator of a spin manifold with positive scalar curvature (ii) the signature operator of the disjoint union of a pair of homotopy equivalent oriented manifolds with fundamental group G. The invariants we consider are more precisely - the Atiyah-Patodi-Singer rho-invariant associated to a pair of finite dimensional unitary representations. - the L2-rho invariant of Cheeger-Gromov - the delocalized eta invariant of Lott for a finite conjugacy class of G. We prove that all these rho-invariants vanish if the group G is torsion-free and the Baum-Connes map for the maximal group C^*-algebra is bijective. For the delocalized invariant we only assume the validity of the Baum-Connes conjecture for the reduced C^*-algebra. In particular, the three rho-invariants associated to the signature operator are, for such groups, homotopy invariant. For the APS and the Cheeger-Gromov rho-invariants the latter result had been established by Navin Keswani. Our proof re-establishes this result and also extends it to the delocalized eta-invariant of Lott. Our proof for the signature rho-invariant, given in Sections 1-13 contains a gap, pointed out to us by Nigel Higson and John Roe. We are currently working to closed this gap. Note that the examples in later Sections remain, because the relevant results can also be obtained by the method of Keswani.

This publication has 0 references indexed in Scilit: